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Abstract Decision models are widely used in software engineering to describe and
restrict decision-making (e.g., deriving a product from a product-line). Since deci-
sions are typically interdependent, it is often neither obvious which decisions have
the most significant impact nor which decisions might ultimately conflict. Unfortu-
nately, the current state-of-the-art provides little support for dealing with such situ-
ations. On the one hand, some conflicts can be avoided by providing more freedom
in which order decisions are made (i.e., most important decisions first). On the other
hand, conflicts are unavoidable at times, and living with conflicts may be preferable
over forcing the user to fix them right away—particularly because fixing conflicts
becomes easier as more is known about a user’s intentions. This paper introduces the
C2O (Configurator 2.0) tool for guided decision-making. The tool allows the user
to answer questions in an arbitrary order—with and without the presence of incon-
sistencies. While giving users those freedoms, it still supports and guides them by
(i) rearranging the order of questions according to their potential to minimize user
input, (ii) providing guidance to avoid follow-on conflicts, and (iii) supporting users
in fixing conflicts at a later time.

1 Introduction

In software engineering, many tasks exist that involve making decisions (Dhungana
et al. 2007; Hayes and Dekhtyar 2005). For example, software installation wizards
guide users through a set of predefined questions, each question with predefined
choices on how to deploy a software system. Or, configuration wizards in product
lines let users select from a set of features and their choices for instantiating a prod-
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uct from a product line. Decision-making is also used to handle variations in user and
target-platform requirements as it is the case with, for example, the Linux kernel (She
et al. 2011), since it has to run on different hardware and users have different require-
ments onto an operating system. Many decisions have to be made, although many
default values exist which is an indication for the sheer amount of decisions required
to configure the kernel. The filling in of trace matrices involves also decision-making,
where users are required to decide for each requirement and piece of code whether
there is a trace or no trace (Hayes and Dekhtyar 2005). Even the process of resolving
inconsistencies in design models could be seen as decision-making, where the ques-
tions would be inconsistencies, the choices the possible fixing actions to choose from
and the relations the side effects of those fixing actions.

This paper introduces the C2O Configurator 2.0 (available for download at the
C2O website1), a tool for guided decision-making—focusing on the product line do-
main. From a decision oriented view, a decision model consists of questions and
choices for these questions, which are typically interrelated. For example, an online
car configurator is such a decision model where the car manufacturer offers a prede-
fined set of car types with predefined features. Relations typically impose or restrict
choices. For example, choosing a convertible makes asking about roof racks irrele-
vant for obvious reasons. Not all relations are that obvious.

During decision-making, decisions may thus lead to inconsistencies if they violate
such relations. It is quite easy to detect such inconsistencies [through SAT-Solvers
(Davis et al. 1962) or consistency checkers (Egyed 2006)]. It is also quite easy to pre-
vent inconsistencies by disabling choices that would lead to inconsistencies. Doing
so is state-of-the-practice, however this is problematic whenever the decision maker
reaches a point where a desired choice is no longer available—a dead end. Typically,
tool support to avoid and deal with dead ends is rarely existent and when a dead end
is reached, decision makers often have no choice but to backtrack and start over. We
identified the following main reasons for dead ends:

1. Decision makers are required to answer questions first that may not be important
to them. This unnecessarily restricts the answers to follow-on questions.

2. Decision makers are unaware of the consequences of their choices because they do
not understand all relations, which can result in favored choices for unanswered
questions being excluded.

The first issue stems from the fact that a predefined order for answering questions
restricts the user’s freedom in answering questions (van Nimwegen et al. 2006). This
issue is largely ignored in literature but of essential importance because users’ needs
vary and users prefer to answer questions first that are important to them or easy
to answer—before being led through the remaining questions. Since the user may
not know how to answer the remaining questions first, such that favored choices are
not eliminated, such a freedom could help avoid possible dead ends significantly.
For example, most online car configurators “force” the user to first select the type of
car before selecting other properties (e.g., engine, color). However, what if the user
cares more about mileage than make? Any pre-wired solution, even if optimal, that

1www.sea.jku.at/tools/c2o.
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deviates from the user’s preferred way of answering the questions then forces the user
to exhaustively explore all choices to find the ones that satisfy the desired properties.
While it would be simple to allow users to answer questions arbitrarily, there are
good reasons to restrict the order. A pre-defined order can be optimized to avoid
unnecessary questions to be answered. The second issue is a matter of visualization
which some tools already address.

Naturally, even by providing the freedom to answer questions arbitrarily, doing
so may not prevent dead ends altogether. Existing tool support for decision-making
does not allow inconsistencies and as such it forces the user to backtrack decisions
to resolve the dead end before continuing. Unfortunately, such backtracking is quite
complex and users may prefer to continue making decisions, even accepting the re-
sulting inconsistencies [i.e., tolerating inconsistencies (Balzer 1991)]. The freedom to
select any choice during decision-making, even a inconsistent one, is a legitimate way
forward without forcing the user to deal with a problem that may not be important
from a user’s perspective at that time.

This paper introduces a product configurator tool that allows users to answer ques-
tions and introduce inconsistencies arbitrarily—but provides the necessary capabili-
ties to support the user during decision-making: Firstly users can make decisions in
any arbitrary order. However guidance is still provided: the questions are presented
in an optimal (with regard to minimizing user input) order, which the user can choose
to ignore at any time. Secondly consequences of decisions can be visualized before-
hand if the user wishes. And finally our tool allows the configuration process at a
dead end to be continued by entering a inconsistent state. However users will be
guided through the remaining questions to avoid follow-on inconsistencies and any
additional answers provided will be used later to help resolve the inconsistency.

2 Illustration and definitions

Our tool works with decision models, as mentioned in the introduction decision mod-
els consist of questions, choices of how to answer these questions, and relations be-
tween questions and/or choices. The example we will be using through the remainder
of this paper is depicted in Fig. 1, it shows a conceptual decision model of how a
modeling tool could be configured out of several software components (much like
as if you were to combine several eclipse plug-ins to one tool). The model depicted
in Fig. 1 has seven questions (Modeling Tool, Consistency, GUI, . . .) with choices
(yes, no, CSP, . . .) and also outlines relations (dashed arrows), the nature of these
relations will be discussed after the introduction to our formalism. While overall the
model is quite coarse-grained, we also included one decision about the version of
the Logger component to show that there are no restrictions on granularity (e.g. the
actual version). This example was chosen because while still being relatively small
and compact, it allows to highlight and explain the different facets of the problems
we want to tackle with our tool.

Formally speaking, Questions denotes the set of all questions and Relations de-
notes the set of all relations contained in a decision model. Thus we can define a
decision model as a tuple of questions and relations:

DecisionModel = (Questions, Relations)
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Fig. 1 Illustrative decision model for building a modeling tool

2.1 Questions and choices

Questions and their choices of how to answer them are an essential part of decision
models. Each Question ∈ Questions has a set of choices (depending on the question
those could range from different labels, to numbers, to Boolean values, etc.) which we
call Choices. Note that the same Choices set can be used for different questions. Fur-
thermore each question has a cardinality constraint determining how many choices
(at a minimum and at a maximum) can be selected as an answer to the question. Thus
we can define a question as a tuple of Choices and a cardinality constraint:

Question = (
Choices, [n,m] |n,m ∈ N, n ≤ m ≤ |Choices|)

To simplify things, we also define the following syntactic equivalence:

Question = Choices ⇐⇒ Question = (
Choices, [1,1])

Examples for question definitions are: Requirement = {trace,no trace, ?}, Num-
ber = {x |x ∈ N, x < 5}, Traces = ({A, B, C}, [1,2]), Name = {s | s is a String}.

Selecting an answer for question is about selecting as many choices from it, as
specified by the cardinality constraint. Thus the following conditions apply to the
Answer set: Answer ⊆ Choices and n ≤ |Answer| ≤ m. Assigning this Answer set to
the Question is what we call a Decision:

Decision = Question ← Answer

To allow for better readability in text, we also define the following syntactic equiv-
alences:

Question ← Answer ⇐⇒ QuestionAnswer

We also define two special Answer sets we call undecided and irrelevant, to have
a convenient way of writing about unnecessary decisions and decisions not yet made.
Additionally we allow Answer sets containing only one element to be written with-
out the curly brackets. Examples for decision are: Requirementundecided , Traces{A,B},
NameDataAccessObject, Number3.
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2.2 Relations

As already mentioned relations are between questions and/or choices. We use three
different types of relations: (i) relevancy relations, (ii) constraint relations, and
(iii) CNF relations which can be arbitrarily complex.

Relevancy relations are used to express relations of relevance between questions.
The intention is to model such dependencies in a convenient way by, for example,
specifying that it makes no sense to ask questions about the configuration of soft-
ware components if they are not even used, hence irrelevant. A relevancy relations
maps from one source question Source to a set of target questions Targets and is
itself a set of implications from choices of the source question ChoicesSource to ei-
ther relevant or irrelevant, formally we define a relevancy relation the following
way:

(Source → Targets)RelevancyRelation = {
(choice ⇒ state) | choice ∈ ChoicesSource, state ∈ {relevant, irrelevant}

}
In order for it to be a well-formed relevancy relation at least one choice should map

to relevant and at least one other choice to irrelevant. An example for the definition
of a relevancy relation is:

UseSubversion = {yes, no}, . . .

(UseSubversion → {Address, User, Password})RelevancyRelation = {
(yes ⇒ relevant),
(no ⇒ irrelevant)

}
Constraint relations are used to express constraints of one choice onto choices

of other questions, like for example requires and exclude dependencies. A constraint
relation maps from one source question Source to one target question Target and is
itself a set of implications from choices of the source question ChoicesSource to sets of
choices of the target question ChoicesTarget. Formally we define a constraint relation
the following way:

(Source → Target)ConstraintRelation = {
(choice ⇒ C) | choice ∈ ChoicesSource, C ⊆ ChoicesTarget

}
An example for the definition of a constraint relation is:

Device = {Phone, Desktop, Laptop}
Application = {Accounting, Inventory, CRM, Sales}
(Device → Application)ConstraintRelation = {

(Phone ⇒ {Inventory}),
(Desktop ⇒ ChoicesApplication \ {Sales}),
(Laptop ⇒ {CRM, Sales})

}
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CNF relations are used to express more complex relations that are not covered with
the simpler constraint relations, but in essence are also constraint relations. Instead
of having a source and target questions like the other relations, CNF relations are
formulated in CNF with decisions used as variables:

CNFRelation =
∧(∨(

x |x ∈ {Decision, ¬Decision})
)

An example for the definition of a CNF relation is:

Requirement = {trace, no trace, unknown}
Traces = ({A, B, C}, [1,2])
CNFRelation = (Requirementtrace ∨ ¬Traces{A,B}) ∧ (Traces{A,C})

2.3 Illustrative example definitions

The illustration, shown in Fig. 1, includes seven questions which are defined next:

Modeling Tool = {yes, no}
Consistency = {CSP, SAT, Incremental}

GUI = {Qt, WPF}
Data Storage = {Graph, RDF, Database}

Transformation = {QVT, ATL}
Operating System = {Linux, Windows}

Logger = {1.1.3, 1.2.0, 2.0.1}
Thus the question set of the decision model tuple is: Questions = {Modeling Tool,

Consistency,GUI,Data Storage,Transformation,Operating System,Logger}. But a
decision model is not complete without its relations of which five are indicated in
Fig. 1:

RR = (Modeling Tool → {Consistency, GUI, Data Storage,
Transformation, Operating System, Logger})RelevancyRelation = {

(yes ⇒ relevant),
(no ⇒ irrelevant)

}
CR1 = (Consistency → Logger)ConstraintRelation = {

(CSP ⇒ {1.1.3, 1.2.0}),
(SAT ⇒ {1.2.0, 2.0.1}),
(Incremental ⇒ {1.1.3, 1.2.0, 2.0.1})

}
CR2 = (GUI → Operating System)ConstraintRelation = {

(Qt ⇒ {Linux, Windows}),
(WPF ⇒ {Windows})

}
CR3 = (Data Storage → Logger)ConstraintRelation = {

(Graph ⇒ {1.2.0, 2.0.1}),
(RDF ⇒ {1.1.3, 1.2.0, 2.0.1}),
(Database ⇒ {1.2.0, 2.0.1})

}
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Fig. 2 Graphical illustration of the decision-making process with our example

CR4 = (Transformation → Logger)ConstraintRelation = {
(QVT ⇒ {1.1.3, 2.0.1}),
(ATL ⇒ {1.2.0, 2.0.1})

}
Thus the relation set of the decision model tuple is: Relations = {RR,CR1,CR2,

CR3,CR4}, making the decision model: Example = (Questions, Relations).

3 Problems during decision-making

The process of decision-making involves one or more decision makers and
a decision model. The decision model’s questions are always unanswered
at the beginning, giving us for our example from Sect. 2.3 the initial state:
State = {Modeling Toolundecided , Consistencyundecided , GUIundecided , Data
Storageundecided , Transformationundecided , Operating Systemundecided , Loggerundecided},
which is also our problem space. The goal of decision-making is to get a decision
(other than undecided) for each question in the decision model, resulting in a config-
uration of a system, our solution space. We define a configuration to be a complete
set of decisions other than undecided for all questions. For example, the configura-
tion C1 = {Modeling Toolno, Consistencyirrelevant, GUIirrelevant, Data Storageirrelevant,
Transformationirrelevant, Operating Systemirrelevant, Loggerirrelevant} is a valid con-
figuration for deciding upon a Laptop in our illustration. In fact for our example
there exist 70 valid configurations, but there exists an infinite number of configu-
rations that are invalid. For example, the configuration IC1 = {Modeling Toolyes,
ConsistencyCSP , GUIWPF , Data StorageGraph, TransformationATL, Operating
SystemLinux, Logger1.2.0} is invalid because it violates relation CR2 that specifies
that GUIWPF is only valid in combination with Operating SystemWindows.

To reach this goal of a complete valid configuration, the process of decision-
making is about guiding the decision maker through the questions and let the her
make one decision at a time. After each decision the problem space gets smaller and
the solution space more complete. This process is visualized in Fig. 2, first the deci-
sion maker selects a question in our case the ModelingT ool question (i). Given the
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Table 1 Illustration of the
decision-making process with
our example in tabular form

Notes: q is question, u is user
decisions, s is derived state, 0 is
false, 1 is true

Decision 1st q 2ndq 3rdq

u s u s u s

Modeling Toolyes 1 1 1 1
Modeling Toolno 0 0 0

GUIQt 0 0

GUIWPF 1 1 1
Operating SystemLinux 0 0

Operating SystemWindows 1 1 1

choices to either buy or not buy a laptop, she decides on Modeling Toolyes (ii). After
that as a next question GUI is selected (iii). After making the decision GUIWPF (iv),
the question Operating System is chosen (v). At this point one can observe for the first
time the typical guidance a configurator tool offers, namely that the Linux choice is
disabled because of the relation CR2, that states that in order to have a WPF GUI one
must use Windows as the operating system. This process then continues in a similar
fashion as indicated (vi).

The decision-making process could also be visualized in tabular form as shown in
Table 1. For the first question the user decided Modeling Toolyes which is indicated
in the column 1st q, u, the effect and resulting state of this decision is shown in the
column 1st q, s. This is repeated for the other questions, where user decisions are bold
and decisions belonging to questions that already have been answered are grayed out.

In an ideal world there would not be any inconsistencies, however inconsisten-
cies can rise easily during decision-making. The first and foremost problem would
be if the decision model itself already contained inconsistencies, there exist tech-
niques how to detect such inconsistencies (Benavides et al. 2010), however this is not
the focus of the paper. For the moment we assume that the decision model by itself
is consistent. Since the model is correct any inconsistencies raised during decision-
making must stem from the inconsistent decisions by the decision maker. As such
the decision maker is also the first to realize there is an inconsistency when a desired
choice for a question is no longer available. We call the point in time when an incon-
sistency is detected failure. So what possibilities are there to react to such a failure
or even prevent it? Before we go into detail however, we must distinguish two basic
cases:

1. No valid configuration exists: this happens when the decision maker configures
something that in this manner does not exist. Eventually after encountering many
inconsistencies and not finding a suitable alternative this case can be identified.
The only solution is to adapt the decision model to satisfy a customer’s need.

2. A valid configuration the decision maker can live with exists, but some of the
questions need to be answered differently.

In the next sections we will focus on discussing the second case and al-
ways assume the decision model to be correct and immutable. For the purpose
of illustration we present one interesting inconsistent decision-making process in
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Table 2 Configuration progression of the example given in Fig. 1

Decision 1st q 2ndq 3rdq 4thq 5thq

u s u s u s u s u

Modeling Toolyes 1 1 1 1 1

Modeling Toolno 0 0 0 0

ConsistencyCSP 1 1 1 1

ConsistencySAT 0 0 0

ConsistencyIncremental 0 0 0

GUIQt 0 0

GUIWPF 1 1 1

DataStorageGraph 1 1

DataStorageRDF 0

DataStorageDatabase 0

TransformationQVT 0 1?

TransformationATL 1

Operating SystemLinux 0 0

Operating SystemWindows 1 1

Logger1.1.3 0

Logger1.2.0 1

Logger2.0.1 0 0 0

Notes: q is question, u is user decisions, s is derived state, 0 is false, 1 is true

Table 2. In this illustration technically after the fourth decision the configura-
tion process could be stopped, since a decision was provided {Modeling Toolyes,
ConsistencyCSP , GUIWPF , Data StorageGraph} or derived {TransformationATL,
Operating SystemWindows, Logger1.2.0} for all questions. However what if the user
is not satisfied with some of the derived decisions as illustrated and wants
TransformationQVT ? Our vision on how to prevent and manage such inconsistencies
is discussed next.

4 C2O configurator tool objectives

The main goal for the C2O configurator tool was to develop one possibility of how to
present our reasoning approaches, which will be briefly explained in the next section.
We wanted to provide a clean and intuitive user interface that diversifies on existing
configurators, not only by providing new guidance aspects to the decision maker, but
also by changing the typical look of configurators.

It should not restrict the decision maker in any way on what questions she wants
to answer first and of course also should not hinder her when she wants to make in-
consistent decisions. On the other hand we wanted to provide as much guidance as
possible without being too intrusive. Thus realizing our main overall goals of pre-
venting and managing inconsistencies during configuration.
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4.1 Automation is good!

Generally speaking automation is a good thing, the more can be automated the less
work is left to do. In the case of decision-making, automations can be very useful
to guide the decision makers and relieve them of making all decisions manually and
help them to identify inconsistencies in the decisions and even resolve them.

User guidance during decision-making is perceived to be a straightforward activity
where a decision maker answers a set of predefined questions, usually by selecting
among their choices. Usually during the decision-making process the information
about the relations between questions is not available to the decision-maker. With-
out detailed expert knowledge, users are confronted with the exponentially complex
task of navigating among interdependent choices and their implications without ex-
planations. It is state-of-the-art to support users by asking questions in a predefined
order and presenting only those choices of the remaining questions that are still avail-
able (Dhungana et al. 2007). For example, after selecting Operating SystemLinux for
the laptop, GUIWPF becomes unavailable. Initially all choices are available, these are
then incrementally reduced as the user answers questions (decides on a choice). Hav-
ing this kind of automation is very useful for a non-expert decision maker. This way
the decision maker becomes aware of the relations incrementally and does not need to
understand the decision model behind it, as long as she does not wish to select choices
that are unavailable, then a different kind of automations are needed to explain the
inconsistency and to help fixing it. In addition to the state-of-the-art it is our vision to
also provide users with automated support in case of managing inconsistencies once
they are detected.

As mentioned before it is state-of-the-art to order the questions to support users,
however this is still done mostly manually. The goal of such an order can be for
example to provide a certain flow of questions that belong together semantically or
to minimize user input. Rearranging the order of questions reduces effort because
questions have relations and answering questions makes other questions irrelevant or
reduces their choices (e.g., choosing Operating SystemLinux makes asking about the
GUI irrelevant in our example because GUIQt can be derived automatically). For our
simple illustration, a user may understand these relations and may be capable of an-
swering the questions in a close to optimal manner without automation. For such a
small illustration, it would not even matter if the user answered the questions sub-
optimally since it takes very little time to answer them. However, the configuration
problem suffers from exponentially increasing configurations and factorial increasing
ways of arranging their order—a daunting scalability problem. In such a context, a
user is no longer capable of optimizing the order of questions manually (MacLean
et al. 1989). If the answering of questions takes time (e.g., in steel plant manufac-
turing) then any reduction in the number of questions asked or choices provided will
save significant effort. So as part of our vision we plan to unburden the creators of
decision models to have to think about the order of questions, by automating this
process.

4.2 Tools adapting to user needs, not the other way around!

It was made clear in the last section that automations are generally speaking a good
thing, but one has also to be careful. In our opinion sometimes automations go to far
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or restrict users in such a way that it can be counter-productive. For instance, just
think of the auto-correct functions built in Microsoft Office, those automations that
try to help the user by automatically correcting misspelled words, or automatically
capitalize words at the beginning of enumerations. While those automations certainly
have their purpose and help many times, at other times they can be quite annoying
and correcting things that are actually correct. In those cases one either realizes the
automatic change right away and takes it back, or realizes it later and wonders what
happened or even if it was a own mistake. In such cases the user has to do some extra
work and might even adapt his working style to fit the tool’s automations.

The message here being, that sometimes automations do not work as intended
(Vicente 2001), or do not fit every user. So it is our vision to allow decision makers
to ignore our automated guidance without any added effort, because in the end only
she knows what she wants. In case of automatically determining the order of ques-
tions, giving the decision maker such freedom may seem contradictory for example
to the goal of minimizing user input. After all, any deviation from our proposed or-
der (likely) leads further away from the optimal path. Yet, we must recognize that an
arbitrary order of questions, even an optimal one, may not be intuitive or appropri-
ate (van Nimwegen et al. 2006) for every user. We should thus not impose but only
suggest a particular order of questions. Allowing the decision maker to deviate from
the suggested order, while still trying to suggest the optimal order for the remain-
ing questions implies that the user interaction must be optimized incrementally and
in real-time, as it is not possible to analyze all possible user interactions in advance
(there are too many).

Allowing the decision maker this freedom can already have an impact on pre-
venting inconsistencies. Using the example given in Sect. 2.3 if the tool forces the
decision maker to answer the question about the logger first, this could already lead
to inconsistencies later. To elaborate this, for example if the decision maker has no
idea what features a certain logger allows to be selected and she actually does not care
about the version of the logger, she basically has to make a random decision in or-
der to get to the questions she cares about, thus potentially leading to inconsistencies
if desired features (e.g. TransformationQVT ) are then not available for the selected
logger.

4.3 Imposing solutions only on request by users!

In addition to giving the user the freedom to circumvent automations it is also our
vision to not impose certain decisions, particularly impose fixes for inconsistencies
except there is just a single way to fix them. It is our strong belief that as long as
there is more than one solution the decision maker should be made aware of this fact
and the decision of how to fix the inconsistency should lie with her. The best case
scenario being that all the direct and indirect contributors of the inconsistency are
known, so that she can make an informed decision on how to fix the inconsistency.
Some automations tend to search for a single solution to an inconsistency, sometimes
even with a certain goal, and then impose this solution onto the decision maker. While
this may be helpful in certain situations where the decision maker does not care about
how the inconsistency was fixed, it should only be the solution if the she wishes so.
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Furthermore we also want to allow decision makers to live with inconsistencies
and delay the fixing to a later point in time, if there are too many solutions to make
a decision right away. This vision also plays into the user not needing to adapt to the
tool’s needs but rather it to her needs.

5 Tool and architecture

The C2O tool currently puts emphasis on the necessary reasoning behind guided
decision-making. We use a SAT-Solver as our main reasoning engine. Feature Mod-
els, Product lines or general Constraint Satisfaction Problems (CSP) are transformed
into Conjunctive Normal Form (CNF) and fed into the SAT-Solver. The SAT-Solver
then serves as an oracle to answer questions about the impact of decisions. Before the
decision-making process starts, the initial optimal order of questions is determined
with the help of a heuristic (Nöhrer and Egyed 2011). During the decision-making
process this order is reevaluated after every decision and the results are communi-
cated to the user. For the creators of decision models this implies savings in not hav-
ing to predefine the optimal order which is exponentially complex. For the decision
maker this implies more freedom in answering questions while still benefiting from
optimizations.

In addition we incorporated our approach of tolerating inconsistencies (Nöhrer
and Egyed 2010b; Nöhrer et al. 2012) into the tool. It visualizes inconsistent choices,
provides explanations on inconsistencies, and allows inconsistent decisions. Most
importantly of all, it lets the user proceed in the presence of inconsistencies, even
encourages the continuation to gather more information about the source of the in-
consistency (defect), to resolve it later.

Both these technologies have been excessively evaluated. We have demonstrated
that our approach for determining an ideal order is 92–100 % optimal and automat-
ically reduces up to a third of all questions compared to a random selection (Nöhrer
and Egyed 2011). We also found that at the time a inconsistency is discovered, it
is around 29–71 % likely that there is more than one option for fixing it (Nöhrer
et al. 2012). Yet, the longer inconsistencies are tolerated the less complex becomes
their fixing (Nöhrer et al. 2012) (i.e., because decisions not only restrict choices for
answering future questions but also choices for fixing inconsistencies).

5.1 Reasoning architecture overview

The reasoning architecture is based on SAT-based reasoning and split into several
layers as depicted in Fig. 3. For each layer there exists an interface to provide flexi-
bility in the implementation. The model reasoning layer is initialized with a decision
model and a SAT reasoner and uses a model encoder to transform the decision model
into CNF. A more detailed description of the inner workings and components is given
next.

Starting out with a Decision Model the first step is to encode the questions with
their respective choices and the relations between the choices. This crucial step is per-
formed by the Model Encoder. During encoding each decision is assigned a numeri-
cal literal, since SAT solver implementations work with numerical literals, e.g. for our
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Fig. 3 Overview of the C2O
configurator architecture

illustrative example Modeling Toolyes → 1, Modeling Toolno → 2, ConsistencyCSP →
3, ConsistencySAT → 4, etc., note that questions that can become irrelevant because
of relevancy relations are automatically recognized and extended with the irrelevant
decision if not already present. After that the cardinality constraint of each ques-
tion is encoded as clauses. For example exactly one choice must be selected for the
laptop question, to ensure this constraint we need two clauses (Modeling Toolyes ∨
Modeling Toolno) and (¬Modeling Toolyes ∨ ¬Modeling Toolno)—the first clause en-
sures that at least one choice is selected, in combination with the second clause it is
also ensured that at most one choice is selected. Of course for the same constraint
more clauses are needed if a question contains more choices. These clauses are later
provided to the SAT solver implementation. After the encoding of the questions and
their choices finally the relations between the questions are encoded. Basically what
happens is that relevancy relations are transformed into implications between the de-
cisions that make something relevant or not onto the irrelevant decisions of the target
questions, constraint relations are already implications between decisions. Those im-
plications are then transformed into CNF in the manner that any implication can be
transformed due to the equivalence a ⇒ b ⇔ ¬a ∨ b. The CNF relations are already
in CNF and therefore no transformation is needed.

The Model Reasoner is the interface between input from the configurator tool and
the SAT Reasoning, it gets the information about decisions made and keeps an in-
ternal configuration state. With the help of the Model Encoder these decisions are
mapped to assumptions which are forwarded to the SAT Reasoning layer for reason-
ing. Generally speaking it is an extension to the SAT Reasoning layer so it can deal
with decision models instead of plain CNF problems.

The SAT Reasoning layer contains two vital components, a SAT Reasoner and a
SAT Solver. The SAT Solver is the “heart and soul” of our reasoning. We use the
PicoSAT (Biere 2008) solver by Armin Biere, however other solvers can be used too,
for instance as discussed later our prototype tool also works with the Sat4j solver
(Berre and Parrain 2010). The SAT solver gets as input all the clauses that describe
the decision model. During reasoning it will learn new clauses for a faster evaluation,
however concerning the configuration it is stateless. This stems from the fact that
we use an assumption based configuration, meaning that while the decision model is
encoded in CNF as clauses, decisions made by the user are represented as assump-
tions (temporary constraints onto literals, e.g. Modeling Toolno meaning that this de-
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cision is true for the next SAT call, or ¬Modeling Toolno meaning that this decision is
false). This approach has two key advantages over representing decisions as clauses:
(i) Assumptions can easily be undone due to the nature of most SAT solver implemen-
tations, assumptions need to be assigned before each SAT call and only considered for
one SAT call, as a consequence no clauses are learned. On the other hand removing
clauses is a tricky thing because the solver would have to know which clauses were
derived from the one that should be removed. Since this information is not readily
available the most used solution is to reset the solver and initialize it with the original
CNF. (ii) The second advantage of using assumptions over clauses is the simple fact
that this way the model is easily distinguishable from decisions made by the decision
maker, which is very helpful when dealing with inconsistencies.

Due to the fact that the SAT solver is stateless and produces only SAT or UNSAT
as a result, it is only used as an oracle for reasoning purposes by the SAT Reasoner.
The SAT reasoner provides the missing functionality to perform more complex rea-
soning tasks and also keeps track of the configuration state and possible inconsisten-
cies. The main reasoning task it performs is to calculate the effects a new decision,
given the model and the configuration state, has. Given such a new decision it is en-
coded and the assumption is added to the configuration state, as a next step the SAT
solver is called with the new state. Should the SAT solver return UNSAT we have
encountered an inconsistency and need to isolate decisions from reasoning otherwise
we cannot use the SAT solver any longer for reasoning because any subsequent call
with the same or more assumptions will result in UNSAT. At this point we use the
HUMUS (High-level Union of Minimal Unsatisfiable Sets) calculation [more details
are given in our paper (Nöhrer et al. 2012)] to isolate all direct and indirect contrib-
utors of the inconsistency, in order to be left with uninvolved decision, which when
used as a basis for reasoning are guaranteed to result in correct reasoning no matter
how the inconsistency is going to be fixed.

If the SAT solver returned SAT, then we can request a complete assignment for all
the literals that satisfy the CNF. Based on this assignment we can remove our state,
which must be part of the assignment. For each of the remaining literals in the assign-
ment one further call to the SAT solver is made with the assumptions contained in the
state and a new additional assumption that is the inverted literal. Depending on the
result of this SAT call we can deduce if the new decision had an effect on this literal.
Given our example starting with an empty state { }, the decision maker could decide
Modeling Toolyes which would give us the satisfiable state {1} and one possible as-
signment {1,−2,−3,4, . . .}. Removing thus the state from the assignment we would
be left with {−2,−3,4, . . .}, next we would call the SAT solver with the assumptions
{1,2} in order to see if Modeling Toolyes and Modeling Toolno are satisfiable (the in-
formation that these assumptions are the laptop decisions is not known in the SAT
reasoner and not needed). As we know from the example this is not possible and the
solver would return UNSAT, so we can deduce that the effect of Modeling Toolyes is
at least ¬Modeling Toolno. As mentioned before other SAT calls would be made with
different assumptions {1,3}, {1,−4} and so on determining for each literal we do
not have an assumption yet if it is still a free variable or already a constrained one,
making it an assumption to be included in the state.
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Fig. 4 Visualization of the illustrative example in the C2O configurator

5.2 GUI overview

The C2O configurator tool is built on the reasoning architecture described in Sect. 5.1
and communicates with it via events as depicted in Fig. 3. Internally it keeps a state of
user decisions that is separated from that of the reasoning engine. This is necessary
because in the case of inconsistencies user decisions get isolated from reasoning,
however in the user interface we want to retain those decisions and visualize this
aspect to the decision maker. Furthermore because our preferred isolation strategy is
HUMUS, we know that after an inconsistency is resolved, decisions that were isolated
might be viable again and should not have to be remade by the decision maker.

Currently only the interaction between the decision maker and the system has a
graphical user interface, defining questions, choices and relations is done program-
matically.

6 Visualization aspects

The visualization aspects can be categorized into three type of aspects, (i) the general
visualization of decision models as described next in Sect. 6.1, (ii) the visualization
of the guidance calculation as described in Sect. 6.2 and (iii) the management of
inconsistencies as described in Sect. 6.3.

6.1 Decision models

Decision models are visualized in the C2O configurator tool as shown in Fig. 4 for
our illustration. In comparison to state-of-the-art configurator tools we turned away
from the usual hierarchical way of visualizing the questions and embrace the chaos.
The decision maker is free to browse all the available questions and select the one
she wants to answer first, of course during this process she is supported as described
in Sect. 6.2. After each question answered the decision maker then selects a new
question the same way and answers questions until all of them are answered. The
choices of one question are presented on the left as soon as the decision maker
clicks on a question. When it comes to relations the visualization is rather crude,
constraint relations are not visualized at all, however by clicking on the “?” besides
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Fig. 5 Visualization of the guidance calculation

one choice one can find out what the effect of selecting the choice would be, as shown
for Modeling Toolyes in Fig. 4. While some configurators have the ability to visual-
ize constraints [e.g. the S2T2 (Botterweck et al. 2009)], usually constraints such as
cross-tree constraints are not visualized in configurators. Although constraint rela-
tions are not visualized by our tool, there is the ability to visualize the relevancy
relations by hiding irrelevant questions. When this feature is activated all questions
but the ModelingT ool question are hidden from the decision maker at first, since the
other questions only become relevant after the decision Modeling Toolyes was made.
As soon as they become relevant they will also be shown again to the decision maker.

6.2 Guidance

The screenshot shown in Fig. 4 is without our guidance enabled. Once it is enabled
and the potential to be the next question in order to minimize input is calculated
for each question, it is visualized by making the font bigger, the higher the poten-
tial to lead to the shortest path for any configuration, the bigger the font. As a re-
sult, as shown in Fig. 5, after the decision Modeling Toolyes is made by the decision
maker, visualized by making it black and show the selection yes with the question,
the remaining questions are shown again with different font sizes. At this point the
decision maker has a clear feedback on what questions at this point in the configu-
ration process would lead to a configuration faster, however she can still choose to
ignore these suggestions and make for example the decisions DataStorageGraph and
ConsistencyCSP .

The incremental calculation and as a result the dynamic adaption to the current
state during the configuration process is evident in Fig. 6, since the importance of the
questions has changed. Furthermore Fig. 6 also depicts that decision can be derived
automatically by eliminating choices based on relations, visualized by the grayed
question captions with the selected choice shown beneath.

6.3 Inconsistencies

Because of automatically derived decisions, but also eliminated choices due to re-
lations, inconsistencies might be unavoidable. For instance after the decision maker
made the three decisions Modeling Toolyes, ConsistencyCSP and DataStorageGraph
the decision TransformationQVT is no longer available. As a result TransformationATL
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Fig. 6 Visualization of derived decisions

Fig. 7 Explaining an inconsistency

Fig. 8 Causing an inconsistency

is automatically derived and clicking on the Transformation question shows that ATL
is no longer available. With the help of HUMUS the tool can now provide an ex-
planation to the decision maker why TransformationQVT is no longer available by
clicking onto the “?” besides the choice ATL, as depicted in Fig. 7. However the
tool also allows the decision maker to ignore that this choice is disabled and lets her
select it anyway, causing the inconsistency. At this point the tool supports two al-
ternative strategies shown in Figs. 8 and 9. In Fig. 8 all contributing decisions are
isolated, as visualized by the grayed out questions with their selected choice beneath
including TransformationQVT (in this case the decisions are light gray meaning that
each individually is still viable). However, one could argue that explicitly causing
an inconsistency means that the decision that caused the inconsistency must be very
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Fig. 9 Causing an inconsistency with trust

Fig. 10 Choices impacting the inconsistency

important to the decision maker, so as an alternative strategy one can decide to trust
this decision to be correct, as shown in Fig. 9.

In either case decisions that were isolated from reasoning are kept in GUI and se-
lecting questions to answer e.g. Logger now reveals a third state for choice visualiza-
tion. In addition to a white background for choices that can be selected without caus-
ing an inconsistency (e.g. see Fig. 4 both yes and no for the question Modeling Tool)
and to a dark gray background for disabled choices that would lead to a new incon-
sistency (e.g. see Fig. 10 the choice 1.2.0) we have a light gray background. Choices
with a light gray background can be selected without causing a new inconsistency,
however they have an impact on existing inconsistencies by either reducing the num-
ber of possibilities of how to fix them, or by resolving them automatically. To find
out what the exact impact is the decision maker has to either click on the “?” besides
the choice or simply select the choice. One example where a choice reduces the num-
ber of possibilities is shown in Fig. 11, by selecting Logger2.0.1, the choice CSP is
disabled for the Consistency question, as a result it is then visualized with dark gray
background. Another example is shown in Fig. 12, by selecting Logger1.1.3, only the
choice RDF is viable for the Data Storage and ConsistencyCSP becomes compati-
ble again with the other user decisions. As a result the answer for the Data Storage
is changed automatically, which is indicated to the decision maker and the decision
ConsistencyCSP is again displayed as a consistent user decision and the inconsistency
is resolved.
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Fig. 11 Reducing the number of possible fixes for an inconsistency

Fig. 12 Automatically resolving an inconsistency

7 Evaluation

Since user interaction scenarios are hard to evaluate and are often subjective, we fo-
cused our evaluation efforts on the reasoning techniques behind so far. Those can
be tested and measured with the usage of random data, covering all possible sce-
narios from best cases to worst cases. We evaluated different scenarios covering the
effectiveness of the guidance calculation with respect to minimizing user input and
its scalability. We also investigated the effects of living with inconsistencies during
reasoning and its potential to reduce the number of possible fixes for an inconsistency.

7.1 Guidance calculation results

Our approach is incremental and the next most important question is computed al-
ways on demand depending on the current stage of the configuration process. Our
approach is therefore always in compliance with our vision to allow the decision
makers the freedom to answer those questions first that are most important to them.
The following evaluations thus focuses on the quality of of automatically arranging
the order of questions to minimize user input and is based on our paper (Nöhrer and
Egyed 2011).

We validated our approach on six case studies with a different number of questions
(#q), relations (#r) and choices (#c), the details are shown in Table 3. The Illustration
used in this paper (Fig. 1) is included to compare with the others. Also listed are
the DoplerModel for the Dopler product line tool suite (Grünbacher et al. 2008), the
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Table 3 Case studies overview
#q #r #c #configurations

Actual Theoretic

Illustration 7 5 23 70 3456

DoplerModel 14 8 48 105 3870720

DellModel1 28 103 147 Not computable 7.3E+17

DellModel2 24 23 147 Not computable 2.9E+15

CC-L2 59 20 137 Not computable 2.4E+20

EShop 286 147 703 Not computable 6E+115

complete laptop configurator reverse engineered from the DELL homepage (during
the period of February 9th till February 12th 2009) in two versions, the CC-L2, a
steel plant manufacturing product line model used by an Industry partner (Dhungana
et al. 2011), and a feature model for a Electronic Shopping system (EShop) by Sean
Quan Lau published on the online feature model repository of S.P.L.O.T. (Software
Product Lines Online Tools website2). The EShop model was the biggest one with
286 questions. Note that this feature model was automatically converted into our
own decision model (basically features are represented by questions with up to three
answers: yes, no, irrelevant) to be used with our tool, hence the characteristics differ
from those given on the S.P.L.O.T. website. The reason for there being two DELL
models is to show that significant differences in how the product lines are modeled
(while enabling the same set of products) do not appear to have a large impact on
our approach. As can be seen, the DellModel1 makes extensive use of relations as
opposed to the DellModel2.

To validate our approach, we compared it with the theoretic worst case and best
case. In the worst case, one needs to answer all questions (equal to the number of
questions in the model and thus the same for every configuration). The best case is
different for every configuration. To evaluate our approach and gauge its optimal-
ity, we thus randomly selected configurations, reverse computed their best and worst
cases and then evaluated how our approach compared to these. Our approach’s opti-
mality is thus measured in terms of its position relative to the theoretic best case and
worst case as depicted in Fig. 13. For validation purposes, all configurations for the
smaller models and 10000 random configurations for the bigger models have been
analyzed for high statistical significance. The figure also shows the confidence in-
tervals (95 %) but they are often so small that they are no longer visible due to the
large sampling. The results show that our approach is on average no more than two
questions away from the theoretical minimum for the small models and six for the
EShop model. Our approach is thus 78–99 % optimal and we achieved our goal of
minimizing user input.

However the decision maker could ignore the proposed order and answer in any
order (highest degree of freedom possible), while still benefiting from the reason-
ing about choices being eliminated and questions being answered. The question is,

2http://www.splot-research.org/.

http://www.splot-research.org/
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Fig. 13 Comparison optimality of the guidance calculation

Fig. 14 Overview of t-test results comparing our guidance calculation approach to a random selection

whether following the proposed order is superior to such a more or less random or-
der. The results for each model are shown in Fig. 14 as a percentage proportionally
to all configurations investigated. For each configuration an independent two-sample
t-test for unequal variance and sample size was performed (with a p-value of 0.05),
to test if there is a significant difference between our proposed and a random order.
These individual results were categorized into four classes: our approach is signif-
icantly better, better, worse and significantly worse. This comparison was based on
1000 randomly ordered runs per configuration. A Kolmogorov-Smirnov comparison
of all the values for each model showed a significant difference with a p-value <

0.0001 for each model except for the Illustration model with p = 0.012. As can be
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Fig. 15 Response time measurements

seen, there were cases where a random order performed better or even significantly
better than our approach. This happens particularly with the first question answered.
Since at that time, nothing is known about the decision maker’s intention (no question
was answered), our approach always asks the same question first. In some cases, this
first question may not be an optimal question to ask for a certain target configuration
and the random approach is more likely to pick this optimal, first question—hence
the random approach may out-compete our approach occasionally. However, we do
see that our approach is almost always significantly better. Our approach to guided
decision-making is thus an improvement over any random approach (likely repre-
senting novice users and perhaps even expert users for very complex configuration
problems).

7.1.1 Scalability

The computational complexity of our approach depends on three variables: the num-
ber of choices, the number of relations, and the number of questions.

To assess response time, we determined the time needed for proposing an order.
We evaluated every model and assessed the performance needed at varying degrees
of questions answered. The average times needed (each model and percentage point
was evaluated by 100 different configurations for high statistical significance) and the
confidence intervals (95 %) are shown in Fig. 15 according to how many questions
were answered as a percentage of the total number of questions. The performance
tests were conducted on an Intel Core 2 Quad Q9550 @ 2.83 GHz with 4GB RAM
(although at the moment only one core is used).

Our finding is that there exists an initial time cost in calculating the order for the
first time (0 questions answered, especially high for the EShop model 56 seconds and
therefore cut off in the graph). After this initial cost (which can be pre-calculated
and cached, meaning that the memory consumption of this cache grows linearly with
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the number of choices in the model), simulation time decreases with questions an-
swered because eliminated choices do not need to be considered any longer. The
fluctuations in calculation time can be explained by the different number of questions
being affected by the elimination effect of the last question answered before the mea-
surement. As can be seen, the simulation time is acceptable and grows linearly only
with product line size. Given that the largest evaluated product line contains over 280
questions and our approach’s response time was almost always <2 seconds, we thus
believe that this approach is quite scalable and applicable to many product lines to-
day. Nonetheless, we see ample opportunities for improving even this performance
which will be explored in future work.

7.1.2 Threats to validity

Threats to construct validity imply whether we are optimizing what we want to opti-
mize. The question is whether reducing the number of questions really reduces effort.
Or, do we answer the easy questions only, leaving the hard questions for the decision
maker? At the moment our approach tries to automatically answer as many questions
as possible. Our premise is that any automation is good. Even if our approach were
only to answer the easy, less effort questions, it still benefits the decision maker by
not having to answer questions that can be inferred automatically. It is also our opin-
ion that each decision maker feels differently about how challenging a question is.
Thus, the effort saved depends on the decision maker.

The threat to internal validity is that we do not know the distribution of configu-
rations. We assume configurations to be equally likely, but we know that this is not
true. Still, we also know that data on the likelihood of configurations is not readily
available. Foremost, it takes a large number of configurations to elicit information
on statistical likelihood. With larger models (questions and relations), it is thus less
likely that such data is available. Moreover, even if the data exists, a feedback loop to
integrate it with the model does not necessarily exist. This could be another direction
for future work.

Regarding external validity the question is: Are the case studies used for validat-
ing our approach representative? Due to the fact that the case studies are from very
different domains and include real world examples, we can assume them to be repre-
sentative. Moreover, we calibrated our approach only on one of the used case studies
and tested it on all six of them. This implies that our approach was not biased by the
calibration and no overfitting occurred.

Concerning conclusion validity we relied on extensive simulations to show that
our approach is significantly better than a random approach.

7.2 Living with inconsistencies results

The evaluation of our approach of living with inconsistencies, based on Nöhrer et al.
(2012), consists of four product line and decision models from various domains
(e-commerce, decision models, feature models). The models were different in size
and complexity. For example, the DELL e-commerce model (only a very simplified
version thereof was used as illustration in this paper) had 28 questions, with roughly
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Table 4 Decision models used
for evaluation Model #q #c #r #literals #clauses

Dell 28 147 111 137 2127

V1 59 137 20 135 257

WebPortal 42 113 31 113 253

Graph 29 70 24 70 163

Fig. 16 Effectiveness of guidance despite conservative isolation

5 choices per question, and 111 relations. Due to the number of relations per ques-
tion, this model was also the most complex decision model, as is reflected by the
number of clauses. Additionally, we investigated a decision-oriented product line for
a steel plant configuration (V1) (Dhungana et al. 2011) and several feature models
(WebPortal by M. Mendoca, Graph by Hong Mei) available on the S.P.L.O.T. web-
site (Software Product Lines Online Tools website3). Key characteristics of those
models are stated in Table 4 like the number of questions (#q), the number of choices
(#c) in the model, and the number of relations (#r) between questions in the model.
In addition the number of literals and clauses needed after the transformation into
CNF is stated. Note that the feature models were automatically converted into our
own decision model (basically features are represented by questions with up to three
answers: yes, no, irrelevant) to be used with our tool, hence the characteristics differ
from those given on the S.P.L.O.T. website.

Our approach is conservative in always isolating the defect, however, at the ex-
pense of also potentially isolating correct decisions. This reduces the effectiveness of
automated guidance. Recall that the aim of guidance is to disable choices of ques-
tions that are no longer allowed. The conservative nature of our approach does so less
effectively. Figure 16 measures this disadvantage. The data was normalized such that

3http://www.splot-research.org/.

http://www.splot-research.org/
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Fig. 17 Distribution of fixable situations without additional user interaction

100 % on the y-axis represents optimal guidance where only the defect is isolated
from reasoning (ideal); and 0 % represents the worst case guidance where all deci-
sions are isolated and the reasoning process starts over. We see that guidance remains
90–100 % optimal despite the conservative nature of HUMUS due to two factors we
identified. One being that, if the constraints in the model have a lot of overlaps and the
number of decisions identified by HUMUS is large, lost information can be replaced
with new decisions due to other constraints. The other being that, if the constraints in
the model have little overlaps, then the number of decisions identified by HUMUS is
small.

In addition to the ability to live with inconsistencies at a minimal cost, living with
inconsistencies can reduce the number of fixing possibilities, sometimes even to a
single fix. We calculated the number of possible fixes at the point of the inconsistency
detection and after answering each following question.

7.2.1 Automatically fixing inconsistencies

At the time of the failure, three situations are possible:

1. A single fix is already computable when the inconsistency is detected and the
decision that caused the inconsistency is trusted to be correct (fixable at failure).

2. A single fix is not computable when the inconsistency is detected but becomes
computable at some point if follow-on decisions can be trusted (fixable later).

3. A single fix is not computable even at the end, with follow-on decisions trusted,
however, the number of choices are reduced making it easier to fix the defect
(fixable with user input).

We can see in Fig. 17, that 29–71 % of defects were fixable at the time the incon-
sistency was detected (i.e., there is only one option available and fixing it is trivial).
The remaining defects required more user input. However, 0–25 % of the remain-
ing defects were fixable simply by letting the decision-making continue (while the
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Fig. 18 Overview over the number of possible fixes

inconsistency was tolerated) without requiring additional information. Tolerating in-
consistencies thus fixes defects automatically in many situations. Even in the cases
where defects were not fixed automatically, the choices for fixing them got reduced
considerably during tolerating. This benefit is discussed next. This demonstrates that
the fixing of defect is not trivial in many cases.

7.2.2 Automatically reducing choices for fixing

For the 29–71 % of defects in Fig. 17 that were not fixable at the time the inconsis-
tency was detected, Fig. 18 presents the actual number of possible fixes at the time
of the detection and at the end (with their respective confidence intervals of 95 %).
Three situations are distinguished here:

1. The number of possible fixes if the HUMUS is computed at the end after all deci-
sions have been answered (worst case).

2. The number of possible fixes if the HUMUS is computed when the inconsistency
is detected (failure).

3. The number of possible fixes if the HUMUS is computed when the inconsistency
is detected, but further reduced by using follow-on decisions with the assumption
that they can be trusted (with tolerating conflicts).

The first situation does not distinguish between decisions made prior to and after
the detection of the inconsistency. Follow-on decisions are not trusted to be correct
and thus there are many choices for fixing the inconsistency. The second situation
recognizes that the defect must be embedded among the decisions made prior to the
detection. This simple knowledge vastly reduces the number of possible fixes. Tol-
erating the inconsistency then further improves on this by considering the effect of
decisions made after the detection (i.e., while tolerating inconsistencies) onto the de-
cisions made prior (the optimal is ‘1’). Tolerating inconsistencies thus makes it easier
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Fig. 19 Normalized progression of fix reduction

to fix defects. The improvements observed in Fig. 18 are more substantial in deci-
sion models where there are the more relations (e.g., DELL model). This is easily
explained. The more relations (constraints) there are in a model, the more knowledge
can be inferred and thus the more restricted are the number of possible fixes.

In Fig. 19 the progression of this improvement is shown relative to the percent-
age of decisions remaining until the end. We see that it is not always necessary to
continue decision-making until the end to get the most out of tolerating inconsisten-
cies. On the decision model with the most relations (DELL), we observe that 50 %
of the remaining questions answered after the detection (while tolerating inconsis-
tencies) are enough to achieve near optimal reasoning. If the decision model is less
constrained, the effect appears more linear. However, we observe that every decision
made after the detection simplifies the fixing of the defect. Note that the 0 % marker
on the x-axis corresponds to the point of the detection and the 100 % marker to the
end of decision-making. The y-axis denotes the percentage of choices reduced for
fixing defects compared to the optimum which is equal the number of choices re-
duced at the end (once all user input is known). Note that we excluded all those cases
where no more reduction was possible after the detection (this data would be always
at 100 % and therefore distort the other results).

7.2.3 Fixing multiple defects

We realize that for fixing inconsistencies through tolerating, our assumption that new
decisions can be trusted is not always realistic, especially considering the fact that
an inconsistency may be the result of multiple defects. However, it provides us with
results under optimal conditions and just by remembering the point of failure in com-
bination with HUMUS, the number of possible fixes can be significantly reduced
compared to searching for a fix at the end of the configuration as shown in Fig. 18.
This always works even if new decisions cannot be trusted and need additional fixing.
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Table 5 Scalability test results
on artificial SAT problems #Contributors 10 100 1000 10000 100000

HUMUS 1 ms 3 ms 241 ms ∼28 s ∼1 h

In other words, what this means is that as soon as a second inconsistency is de-
tected during configuration all assumptions made on how to fix the first inconsistency
based on decisions made between the detection of the first and the second inconsis-
tency need to be isolated with their decisions, otherwise incorrect reasoning might
be used to reduce the number of fixes. However as long as not all new decisions are
involved in the new inconsistency the number of fixes can be reduced through rea-
soning. We presume that the effect on incomplete reasoning is bigger than just with
tolerating, investigating this will be part of our future work.

7.2.4 Scalability

We also conducted performance tests on an Intel® Core™ 2 Quad Q9550 @2.83 GHz
with 4GB RAM, although only one core was used for the time being. The computa-
tion time needed for all models and the different isolation approaches was between
0 ms and 1 ms per computation. The evaluated models are not the largest SAT models
around, however in context of this domain they are quite large and we have shown
that the approach scales for our case studies. However further evaluations on artificial
SAT models (Table 5) show an exponential growth but acceptable performance for in-
consistencies involving up to 10000 assumptions. While those artificial SAT models
may not represent the structure of typical decision models well, they represent the
worst case structure for our implementation. Those artificial SAT models consist of a
single clause containing n literals (l1 ∨ l2 ∨ · · · ∨ ln) and then all literals are assumed
to be set to false resulting in an inconsistency because at least one literal has to be set
to true. While this kind of SAT model may seem trivial, it represents the worst case
for our HUMUS implementation resulting in n ∗ n! SAT calls.

7.2.5 Threats to validity

Threats to construct validity imply whether we are evaluating the different isolation
strategies with the proper criteria. This paper evaluated the different trade-offs of
common SAT-based strategies to tolerating inconsistencies in the domain of decision-
making based on qualitative criteria (incomplete, incorrect reasoning, and revisita-
tion) and other criteria (performance). While we acknowledge that these criteria may
not be all there are, they seemed reasonable enough for our needs.

We made no assumption that would invalidate the internal validity of our findings.
As was discussed, our approach applies to guided decision-making and was evaluated
on pre-definable decision models only. Fortunately, many decision models fall into
this category and future work will show whether these strategies are applicable to
tolerating inconsistencies in general.

Regarding external validity the question is: Are the case studies used for validating
our approach representative of decision models in practice? Due to the fact that the
case studies are from very different domains and real world examples, we can assume
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them to be representative with regards to composition and observable behavior. It
seems reasonable that in other models relations will be as least as complex as in
our case studies. We exhaustively evaluated the five case study models by randomly
injecting defects and observing the progression with regard to the different isolation
approaches. Due to this exhaustive evaluation and the conclusions, we believe the
conclusion validity to be high.

However, we cannot generalize that our result will apply to other domains where
SAT-based reasoning is used. This thesis thus provides a proof of concept in that we
found domains where tolerating inconsistencies is indeed a viable option. We believe
that many other domains would likewise benefit from observations we made here,
though perhaps not all.

8 Related work

Product line engineering is a domain that is connected to our approach to decision-
making in many ways. The process of configuring a product, therefore also often
called the configuration process, product derivation or more general the decision-
making process is in essence what our tool is about. In most cases configuring a
product involves one or more end users also called decision makers, that translate
the requirements they have on the product into decisions how the variability should
be handled. Typically this configuration process is not done completely manually,
but rather with the support of configurator tools. There exist a number of different
configurator tools for product lines (Asikainen et al. 2004; Dhungana et al. 2011;
Trinidad et al. 2008; Mendonca et al. 2009a; Nöhrer and Egyed 2010a; Botterweck
et al. 2009), that support different kind of approaches and differ on the level of support
the provide to users. However, all configurators share the common goal of guiding the
user(s) to a valid configuration/product.

Besides using reasoning techniques to derive products, they can also be used to
check for inconsistencies within the product line model before the derivation process
even begins. Such analysis can range from simple things, e.g. detecting anomalies
(Benavides et al. 2010) like for instance dead features and false optional features, to
reasoning about non-functional properties of the product lines (Siegmund et al. 2011).
Basically product line analysis is checking for anything that could cause problems
during product derivation.

Once the system is modeled, these effects can be calculated, for instance, with
SAT-Solvers and used for eliminating conflicting choices (Rosa et al. 2009). Translat-
ing configuration problems/feature models/decision to SAT problems (Tseitin 1983;
Mendonça et al. 2009b) is solved.

SAT-based reasoning is state-of-the-practice (Mendonca et al. 2009a; Trinidad
et al. 2008). It has several primary uses: SAT reasoning is used (i) to validate prod-
ucts (Benavides et al. 2010), (ii) to find viable alternative solutions if a product is not
valid (White et al. 2008) or auto complete partial products (Mendonca et al. 2009a),
and (iii) to provide guidance during the configuration process (Rosa et al. 2009;
Nöhrer and Egyed 2011). To validate a product one call to the SAT solver is sufficient.
For the other uses several SAT solver calls are necessary with different assumptions
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to find out if combinations of assumptions are valid. So basically in these cases the
SAT solver is used as an oracle and the reasoning process is based on querying this
oracle.

Another area of related work is about guidance itself. Guidance is foremost about
tool support to get the users to their goal (Haw et al. 1994; Cobleigh et al. 2006). Thus
guidance “behind the curtains” consists of two major components: (i) automation and
(ii) additional information to help users make decisions. Although providing as much
guidance as possible may seem like a good idea, this is not always the case as sug-
gested by van Nimwegen et al. (2006). They make the argument that too much guid-
ance triggers the behavior in users to completely trust the guidance and stop thinking
for themselves even in cases where the guidance fails. Vicente also makes a similar
argument in Vicente (2001) using the example of automatically set VHS recorder
clocks which very often fails miserably in the most unusual ways. He presents a good
example for how automations can fail, although one would think eliminating the hu-
man is a good thing if you think about improving safety or productivity, basically
arguing that automations are not foolproof and one should not rely solely on them.

But guidance is not just about the technology “behind the curtains”, the visualiza-
tion plays the most crucial part, but can only be as good as the information it gets. this
visual guidance should not be to overwhelming by providing too much information,
as Miller already pointed out in 1956 (Miller 1956) seven plus or minus two is the
magic number of the humans capacity for processing pieces of information at a time.
An overview of different visualization techniques—like for example different types
of trees, flow charts, Venn diagrams, etc.—and their applicability to product lines is
given by Pleuss et al. (2011).

9 Conclusion and future work

In this paper we presented a configurator tool supporting two distinct approaches for
managing and dealing with inconsistencies during decision-making. One that helps
preventing inconsistencies by giving decision makers the maximum amount of free-
dom possible, while still providing meaningful guidance to reach one’s goals faster.
The other approach using a reasoning strategy for living with inconsistencies during
decision-making.

Several evaluation scenarios provided insight into the effectiveness of our ap-
proaches and their respective costs. It was shown that our guidance calculation with
respect to minimizing user input is nearly optimal and fast enough to be used inter-
actively. Additionally it was also shown that the cost of living with inconsistencies
scales and the level of incompleteness is reasonable and that it can even have a posi-
tive impact onto resolving inconsistencies.

In summary the C2O configurator tool presents a new unique way of making de-
cisions putting the users first, giving them the freedom to make decisions and resolve
inconsistencies the way they prefer to, while supporting them with the shortest path
through the questions to any possible configuration and providing explanations in
case of inconsistencies. Even to live with inconsistencies while profiting from correct
reasoning at the expense of marginally more incomplete reasoning, thus also allowing
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any existing automations to work correctly in the presence of inconsistencies without
adoptions needed.

We see many opportunities to improve our work further. First of all some sort of
user evaluation would be nice to know how well this type of configurator will be ac-
cepted by users and how much they actually feel it helps during the decision-making
process. For the guidance calculation part interesting areas of research would be to do
usability tests with our configurator tool to see, how well the mix between the free-
dom to answer any question and the suggested questions being bigger and changing
after each answer is received in comparison to state-of-the-practice configurators. It
would also be interesting to get actual configuration data to draw conclusions about
the actual distribution of configurations in one decision model and to see how much
this data helps to further improve the optimality of our approach or if it even provides
any significant improvements. As for the HUMUS isolation strategy there are a lot of
research opportunities. First of all its use for product line analysis can be explored,
also its potential and feasibility for fixing multiple inconsistencies while tolerating
them. Besides improving the calculations behind the approaches to scale even better,
the greatest challenge will be to apply our approaches to other domains and explore
if and to which degree our approaches are useful in more general modeling scenarios.
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